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Abstract

Minimizing the area of a circuit is an important problem in the domain of Very /.arge Scale InfegratioL We
use a theoretical VI.SI model to reduce this problem to one of laying out a graph, where the transistors and
wires of the circuit are identified with the vertices and edges of the graph. We give an algorithm that

produces VIl.SI layouts for classes of graphs that have good separator theorems. We show in particular that any
planar graph of n vertices has an O(n g2 n) area layout and that any tree of n vertices can be laid out in linear

area. The algorithm maintains a sparse representation for layouts that is based on the well-known UNION-
FiN!) data structure, and as a result, the running time devoted to management of this representation is nearly
linear.
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1. Introduction

Ile rcmarkaible ad'.ance of %cry Lirge scale integrated (VI SI) Cicilotr has spairkcd research into dhe
design ofl algorithm,, suitable for direct. hardy. are iniplenicntation. I o the coniputer theorist. V IS I provides
an attractkie mo del of par; lle corn p n tAt iii fo wrh firce reasi ns. j:i rst 0'it 1 the it out 1her if com po ncurs t at can
fit on a single chip is large, and he~ond that his. hecii doubling eter'. one to) 1 k 11rs is currenrl' po)sible
to place 10 components onl a '.iit: chi p. id it is pioicted thait this iihr \x~ ill \er. likcl\ groA to 107 or

even 1W~. I hes,: large nuimhc rs tmtik as mIprOtIC anlyvSis and othecr theoretical tools appl icahle to this
engineering discipline. Secondi'.. VI SI hardware expense cart he iclatcd directly to the \er. mathematical
and geomletric cost function of' arci. Unulike older ech nologieS. the components mid intercionnections
between comtponents are madeLI Mut Of the sante "Stuff' inll VI_1, and henice area is al Uniform cost measure for

both. Finally. VLI S pro%. ides i model of parallel computation that includes cormmnication Costs ats Well as
operation Counts. Ithe Cost of' Commiunication is represented explicitly as the area of a fixed-width wire

between two processors. fin fatct, inlterconinectionls can consumne most of the area of an integrated circuit chip.
A major goal, therefore, is to rniniie/ the area required by particular interconnection schemes. 'Thlis paper
examines the problem in an ,ibstract setting: "Given a graph, produce an area-efficient layout.

Figure~ 1: An it n g n) lai~out of a complete binary tree.

TO illu tstrate the Subtleties inherent Il in Ihis p rot)lent. consider lay ing out a coinplete bfinary tree of nl 2k-

vertices. Figure I show s anl oh'. ions soluo n that requires ((ng ii) area-O(17) across die bottoml times

O(lg n) height. Observe that ats w.e iscend the tree from thle lea'. eS toi the root, the number of wires is halsed
fromn one level to the next, bUt the ]lngtIh o f the Aire'. doulehis. th is mecans th at. the Mut0ou1. of wire devoted to
eachi Ic'. c of the tree is the saine, thle recurrence that describes the airea requi red by this tal Lout is A4(1) -1I
for nt = 1, and

A (n1) -2A 0n2) + it/2

for it 2 k_1 \&here k > 1.

[here is a miore ef'ficient solution to this embedding problem. Ilbe so-called 11- itce, kiyour [171 shown in

Figure 2 requires onl\ 0(n) area in spire oftrite ffict that relatively long wires are used towards the root of the

tree. to) this l;i.N oit. the number of v i ics is hal'.ed from le'.el to level as y. e ascenld to the root, buit the length
of the wires doubles oiil c'.en. t'.so Ic'.els. Whereas, thek stUHIl1ird 0)( i Io n) lay out us~es just one dimtension for
rouitine fltoist of the %%~ i res. the ItI-tree ma1.kes better us~e ot' both sfiacial dimensions. I hie recurrence describing

the arem required I) the I I-ree is miore complex than thie pi1e'. iiits onte beciii'. iof its nionlinear tormn:
A 01) I foin , land

.1 (n) 4 AQ n14 J) + 4 v'1T/4 ) + I

tfor n - 2 4& 4 -1 tcre kA> I.
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Figu re 2: 'Hie /I- Ite la. out oif t co mplete binary tree.

hiTs recurrence can be solsed b, Liking thie square rta ofh iih sides ofthei :ta v .. rt e; in
terms otf V.10u). the length of the ccdee of di-e lx.Out. ie rcAk recurrence Is a ipl . -a.>rq
reCUrrence M hich has solutionl O( v7?) for the cdue of the la.,out.

Ieo remajinder of this paper is orgainiicd ils foflohs. Sectiors 2 thiuh5 cor[flt7i I- ~ Anitr

that % III he Used in later sections. Section 2 conitains a f( rm ul~aion ofI lI Yr WJ r-. Jiud S 'n 3
gltes the definition of a epintior theorem. Some I-esuhis reoa,,rdint the .4ov mnd )C : r: o .huts -re

proved in Section 4. In Section 5. ant important nonlinear rcurrence vqu:ti 'n is sokozd.

Section 6 brines the disjoint ideas Of the pre% ioLns sc:' (ns 10120111C b., u'n ea::rI " t'-Ip
cunstnFUCt %I SI la. (ots . N1a1M, corolaieCs fol]Mk from- tl main r-sh c,1 h. cshrd1'r" I

Section S. an Implementation of' the ILI. 'out aigi rithmn I, presented '. hhs (se -, : I \
al ao ri tn rn anatl% ed h% -larjan [221. It is shev. n thatt the tinne rcq,,ired C(' mnaning 12 rcp. -"2rt1 I 1
Ia. out is nearis linear. Section 9 uses man. of the techniques fromrn icecuons ti n, t la.tu
model in khich the '.erticces of a graph are constrained to lie on a line.. FIll"Jl Sct; , :0~e r lICe I,
Work cf this paper in proper perspectise.

2. The VLSI Model

Blefore presenting the \ l.SI model used in this piper. it is \wrth- bie to ,Ommne oeF ittrihutcs Of
%TSI technolwties. % I.SI component';-,Ai re and tratnsitors-areC ,cimtrt~wned it, lie !n :i. Ir fl~t a C Ofe

silicon. Ilec.iuse tdie numnber of Jo ers is smill (usual; under '00~. th,' s1/e 0;f % ISI Jin; ATI "Qxued

tie ttl area (if il ie{ n used-the lxsers con tributinc to the Ait of .N e to ci's I, I Yl~ltibia
proces has a naiturl metric, the plimmum 6aiitiulrt vi:o X. s iJ ~hs th" "Nid[ of 111 th.' 1r1I r Cetl can
imintifttired. ie smallest iransistor that c~mn IQ mat~ is e qi ca e th d~k X :-,, X7 am.
,A ire of len-th 1. consumeis X 1. areQa, it is no0t unsul-M1 ff 1r mich of the ir-! !-cupnnc ~r~
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Ituitively, tile VI.S .1 model Should mnake one-to-one correspondences between edges in the graph and
wires inl tile layout, and betseen \ertices in the graph and transistors in the layvOUL. [he mapping between
edges and wires scenms straightflwri aid enough, hut there are nlans issues to he resolscd inl establishing a
correspondence betsseeu vertices and transistors. Ani important one is that it %ertex in a graph may have large
degree, and yet onl anl integrated circuit, an arhitr-aril% lar. e number of wires Cannot10 COnlC together at a single
point. There just isn't enough room. Another problem arises fromt the faict that a trainsistor occupies arca.
W~hat assumptions should be imade about the size an~d shajpe of thalt aJrea?

In this paper. wve rcsulve tiics (tiffienlics bY restr iciiin, the liscussitt to classcs of graphs tvih veriex Jlegrees

that fire !ount1ed b.) a1 £mentsj. and b i briber 'I'sunuon that votiiees require on/v a constant area ofsilicon.

AIlthough1 these constraints ma% seeml severe atL first. thle results of thle paper are easily generaliz~ed to miorc
complex, models. For example. there is at simple tranlstfonnlation from an arbitrary graph to a trivalent graph
suIch thatl ech1 verteX ofthLle or-iinail graph is at block (of' the tri aleuit graph. A nother ss a' that the niodel can
be extended is to alllow% ses eral transistors to he connected by a single wire. [his is easily accomiodated by
considering bipartite graphs-s ertices in one set represent transistors and those in the other represent wires.

H]aving resolsed the graph-theoretic issues, we n1ow turn to the miodeling of thle layouts u.emselves. The
V'LS .51odel proposed here is simnilar to that of 'lohnpson 123] inl A~hich "~ires have unit width and only a

co1ntn number ( tss O) mnay cross at a point. \er-tices are placed on at rectangular grid so that each lies within a
grd iqure. I/des run hori/.ontally and serticallv. one per grid square. excep~t that an edgernnn

hori/on tally may cross one running s ertically. 2

Layouts that are designed Awith this model have the property that they are sliceable. 'lliat is. a horizontal or
\crticail line can he uIsed to bisect thle layout, the pieces canlo n mvd apart, and the sesered wires can be
reconnected to reali/e the original topology. Slicing can be tised to generate new layouts fromn old ones. For
example, I-igure 3 shosks how slicing enables a new edge to be routed hetween two existing vertices in a
layout. 'I %%( 0 ho rizontal and two %ertical cuts are made through the las out to expose the thle %ertices that are to
be connected. (Actually, two slices in one direction and one in thle other always suflice.) 'Ihle pieces are
separated bs at grid unit, the severed edges are reconnected across the gaps. and a new~ edge \khich connects
the ertices is run thr'ough the gaips. If theC length inl gr'id Units oif the original las ut was 1. and the width W4,
the new lamoot has length at most 1.+2 and width at most 114+2. It should he noticed that the slices through
the lay out muLSt be st raight-a staircase cut mray reqire the pieces to be separated by miore than at single grid
Unit, fr at new edge to be routed.

3. Separator Theorems

lRecently . I ipton anid I arjan 1141 showved that ams planar graph of it scrtices can be divided into two
subgraphs of* approiximately tile same suze b renios jg onls O( V/7) %erucos. Since the subgratphs are

thenislsl c,, planar, this u'porator the'rem ipros idks a hav is tn xploiting the: dis ide-aind-conqucr pnuadignm ill.

\e shill1 find it cons eienit to lter thie deinition of ct rt~ themn thli I ip-ton miid I a: Ji\Q. Whereas

they hiskeet Igrap-h h% n s uilg ertices,. sic "1hall cnn ei edmxs.jll. cocniiI k

classes of --rqphs \00Hh hi inoled degsre, thec delini lionl i c se i" cqurs lkent csoept for thle saflues of' thle

Al,"'111 m the &Il <t uly '''oHI. :1.

I Iil\\h c l
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Figure 3: Two hori/ontal and two vertical slices are more than sufficient to route an edge.

)cfinition: Let S be a class of graphs closed under the subgraph relation, that is, if G is an
element of S. and G' is a subgraph of G, then G' is also an element of S. An f(n)-separator
theorem fbr S is a theorem of the following form.

There exist constants a. and cs where 0 < as < 1/2 and c. > 0 such that

if G is an li-vertex graph in 5, then by removing at most c~f(n) edges, Gcan
be partitioned into disjoint subgraphs G1 and G2 having an and (1-a)n
vertices respectively, where cs < a < I-cs.3

The set of rcmo.ed edges is called the cut set of the bisection, and 1(n) is called the iiid.h of
the bisection.

iis definition is adequate for Lipton and rarjan's V'-separator theorem because the class of planar
graphs is closed under the subgraph relation. But there are many classes of graphs for "hich the same dis ide-
and-conquer approach works, yet the class is not closed undcr the subgraph relation. The notion of
separability can be extended by taking the closure of the original class of graphs Aith the subgraphs
postulated by the separator theorem. Using this interpretation of separability, it is easy to sho\% 1131 that the
class of trees has a 1-separator theorem. (The class of trees is not closed tinder the subgraph relation, although
the class offin-ests of trees is.) We shall give additional separator theorems in Section 7.

-throu outl ih is paper jI is a.,.uimcd \ithout loss of pcncrmIiv thal a is chosen to pcr im n to e,,ac Itii t) an inl I qm) %atue ]his

aNiumirwiion is piekvieid omer the lSe Of floor or cctin, lo1100on beau se it will he ue lul in dciif. the p:inicular \aItis or n and

It,-cju,,c it ni:ikes the il;ithcnialicil konldiri i OOe" rtad-i& )IC.



4. Areas and Aspect Ratios

The size and shape of a rectangle is uniquely detenmined by its length 1. and its width W, where we shall
assume that L > W> 0. But there is another coordinate space for specifking si/es and shapes of rectangles-
area and aspect ratio. Everyone is familiar % ith area and knows that the area can bc defined as the product
1. I. 'Tlie aspect ratio a is defined as the quantity W/I., which by this definition, is less than or equal to one.
Given the area and aspect ratio of a rectangle, its length and "idth are gi en b, 1. v ?U and IV V"aA'.

Suppose a graph has a VLSI layout of area A and aspect ratio a. It is natural to ask whether there are

other layouts Of the graph that ha% e diffeicnt dimcnsions but similar area. [he following theorem shows that
a long and skinny la out can he made into a square layot (,ispcct ratio of one) by paying only a constant
factor increase in area.

Theorem I: If the bounding rectanugle of a given layout has area A, then there exists
topologically equivalent layout that can be enclosed in a square % hose area is at most 3 A.

Proof Let the length and width of the original layout be integers 1. and W If I. < 3 11, then a square with
side 1. satisfies the constrairts (it' tie the(rem. Now suppose . > 3 W The layout can be sliced in several
places and "folded'" like a roadnap vith the severed wires connected around the corners. Figure 4 shows a
square with side s = [ VA in "hich a rectangle has been folded. This rectangle is the longest rectangle of
width I" that can be folded into the square, and so if we can prove that the length of this rectangle is at least
L, then we will have demonstrated that the original layout can also be folded to fit in the square.

[f 7

L.7

Le k iiV etenme fpee it %hc hs)nctrcjLl t dhW)s oi odd

- II__

II-J

S- --

T iv

-- ' L I . . ..I

- .t1

- $

Figure 4: A layout can be "fi ildd to) fit into a square.

l.et A = Is/U 'I he the nmrlber of pieces into o hiclh thiis hin2est rectanic if" vsidth I" has been follded.
T[he recta ngle is made tup of t\ olonItg pieces and 1.-? sho~rt piece,,.."inco I. > 3 I Iittplie,,s >3 I'. the short

piece.s must lie at Icist 1/3 grid units l]o ., and the low-, picce, iill,,s 1 C ' ,  i 1: t l ie c .1N& It /3. I hms the total
lentih o'dih fIilded rCcuanglc is ,it c'a (k-2).;/3 f (2 s/3) - I(A+2)/3.

BC.'au.se k is tie lar'gest itiiinr of pieces oi 'i vslh 1 tu . iid e itid 111 Kihqu.1t. ii fiullovs that

~~i



k+1 pieces of width 11' will not fit. Therefore, the length s of the side of the square must bc strictly less than
U'(k+ I). vhich means

By definition of s, the quantity (S+ 1)2 must be strictly larger than 3 A, and hence

3LW < (S+1) 2 - I = s(si-2).

Substituting for s,

3LIV < s( W(W~) - 1 +2)

=s( I'(k+ 1) + 1)

< sW1;(k+2)

since It' > 1. Cancelling It' from both sides and div iding by three yields 1. < .s(k+2)/3. But thle rightliand
side of this inequality is thle Value that We earlier demonstrated was less than or equal to the total length of the
folded rectangle. Thus 1. is less than) this total length, which was to be proxed.4 E

Can onc "unfold" a square layout to mnake it arbitrarily long and skinny wkithout paying a large increase in
area? Not alw4avs. and a unit square layout provides the counterexample, If "C insist that thle side of thle
square be large, the answer is still no. F-or example, we showed in the introduction that an n-leaf complete
biniar tree can he laid out in O(n,) area. But in Section 9, wke shall prose that the mninimumi dimension of that
arca mutst have order at least If n. Thius to achieve good Lipper hounds for Lai outs. it seems prudent to avoid
those that ha'. e small aspect ratios.

Mbe technique presented in Section 6 to construct area-efficienit la\ outs recuirsxely bisects; rectangular
areas. I o *ins oid creating itrhitrari l long and skinny rectangles during the recursion, it is important tat the
aspect ratios of the generated rectanglies be bounded below by a positis e comnstat. [Hie lest lniia scts forth
conditions" M' lereb\ at rectangle W hose aspect ratio is so bounded can be bisected into tv.o rectangles whose
aspect ratios are similarly bounded.

L emma 2: 1 et R be a rectangle with area A1 and aspect ratio a "here a >a foir some a
in the rng 0 < or < 1/2. Suppose R? is bisected parlallel to its short side into t\',o rectangles

Riand R2whose areas Al and A) are .f and (I -C)A for some C in thle range a < !5 I-a.
[lien the aspect ratios of thle subrectangles are bounded belo\.' 1w a. that is. a, > a and

P'roo~f, Without loss of genleralit\. wNe consider R1 only. [hle proof' may be broken into t\%.o cases. If
>as, then the aspect ratio of R, is aR / . 'Iblis is bounded below b\ a since a < a R imiplies that

a < a/ ! a OR / Onl thle other hand if < a R thcn the aspect ratio of R1 is 4 /aH But a bounds f-rm
bclo.s. and hience a < a/a R :S GR

Suppose at squa~re is di'. idcd into two rectangles so that thle raitio 01 the area o~f thle smal~ller to thle larger is
at wor 0st a /(I-a). a!nd then the rectangfles mre theiscl'.es subdi% ided by at ','orst the samne rat i of areas, and
so forth. lemmna 2 sa~ s that if thle biscction is JaaS parallelIC to thle short side, then no rectangle is ew r
generated x'.ho se aspect r~itho i s \orse di ai aJ. 'I lie d i % ide-I mid -cimq tier clInt ruolIn in Sectionm 6 '.' il use this
result.

It hlouild he niciitiiwiid that a kow ciw i ;ichw\,- \ c a nnc-b\ -risc tcclail is fotdcd 11110 a hive-h ht~c kqimre
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5. A Nonlinear Recurrence

Suppose S is at class of graphs for which an f (n)-separator theorein has been proved. In Section 6 we
shall show how to lay out any graph in S. In ibis section, we insestigate a 11noiea r-CCUrrence equation that
will be used to relate f(n) to the area of the lavout.

ILet A (1) be at positive constant, and lct A (i) be defined on any integer 1 >2 by

A (ni) = max (A (ant) +A((I -a)n) + 2f( n)N1 Ax),) +A ((I -a);) + f 2(n)) (1)
aa <-aS

=max~ (N/A (an) +/I((]I-a)11) +f[(1)) 2 ,

for some 0 < cs<1/2.

Gi~en a particular f(n), there are standard methods for solving such a recurrence. We shall use a
technique, however, that will enable its to solve this recurrence for- broad classes of J'(n). We shall define a
simpler function /1(n) Xhich will be shown to have the property

A(n) ! uz11) (2)

for all n. B prov iding an upper bound for 11(n), it will be easy to use (2) to bound .,f(n).

WVe define 11(u) as VrA -0) for it = 1, and as

11(n) mj~a11( B a) + f (n)/VI-)

for it > 1. Property (2) holds for nt = I by the definition of 11(1). Making the inductive assumption that it
holds for values less than ti,

A (it) :5 max (\/ an/ tl (an) + ( -)nB7 (0l-a)n) + f (n))2

a S sa<1-as

:5 max ( van/I(ani) + (I _a),,12 (an) + f (n)) 2  (3)

!a 1-. ( V rt 1-1 (a -n) + f ,1)

<max n (BI(an) + f (,i)/vl-) 2

it 1 2 (f).

Line (3) in this proof ft (lows froi the ctmsiderat inn of t\s o cases. If J?("at) 1 -a)) for die valuec of a
tat realdics the inaxsimuni. theni (3) he kiens ed from11 the 111-C Iots line h\ st raightforward substitution Of
/?( an) for /?(( 1 -010,. On the otheri lmd. if I?(a,,) < l?(( I-a)'. then substitution of' l?( -a)n) for B?(an)

folosked h at chjinge, of sariablle of 1-ay for a yields the sfnle resulIt.

It remainls to es :lunte BOO (nMl ich, escept Cor the nmt\ nfl iation, is at simple dis de-and-conquer
recurrence that can he sols ed bv iteraition. 'Ibus

81n 00 !4 + LIL.+ LhrI+ + an2 . ti,;) (4)

v here r < -lo(, I: ('tell %,lt1 oc a a,.. n Is the i .t\ I ;A, f)11,t ICI1I' Oc I ih 1\ iaim n 1111 t each \t'ltee (if tle
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iteration: and the product al, a equals I/n. Upper bounds for I quation (4) can lic detrrmined on the

basis Of SUitable assumptions abOUt f( t). The Lipper b)oundS in I abl I kce detelon neld byV C'~a! uatinlg this
summation according to the indicated assiimptions abOtit J'(11). 'The Io0 Cr bounds for A1(n) "ere derivecd by
defining it function (ni) which is similar to B(,u) hut which provides thle bound /1(11) : 11 (, 2(11).

Table 1: SoIlutions Of Recurrence (1).

fP") B(n) A (n)

(tq q < 1/2 0(1) 0(n)

O(V'tH lg'n). k > 0 O(lgA+111) o(11 1g 2*+2 ,)

q > 1/2 t 0(f (1)/v 0(f2 (n))

tSee teui foran explanation of this entry.

Tlo demonstrate thle ulpper hound results For die thirid entry. it is in1SU fticient to assume only that
f( n) Q(ni) for some q > 1/2 ats the table implies. In addition the funciion f(ii)1\1 7 must he \&ell-behaxed

in the foI lowkiiig sense.

lDcfinition:. A funlction g( n) is Said to satisfy R gularuu ( ondi CI ('/if there exist positive
coinstants c, and 1f, such that cl< 1, #1~ !: 1/1. and g (ft n) :S c1 g~n) for all Sn ffiCientl y large 11
and all] 13 in the range ft 1 f -/31.

Making, die assumption that f(n)/xfJ satisfies Condition C1 with fl, as. we can now prove die third
line (if thle table. For large nj and as 5al 1 -~a., we have

and in -eneral for each term in Fquation (4)

-f(ala2 . a n) DO~n

Substituting these terms in Fqulationl (4) gives the hound

B( n) ! f (1) (1 + + + .1 2 + +osai

which is 0f )//)since Cl< 1. T[be constant arises fromn die finite number of salues that are not

Su lffiCienltlv. large according to the regularity condition.

We has e just shown that thle third entrsA in the table holds iff f( ,,)i V sattisfies Condition Cl1. What canl
be deduIced from at s% aker assumiptionl? SupIpose. 10r exam1ple, that we only\ assume1 lil at (11)/\6 is
mnoitonically nondecrea.sing, that is
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Rlan) <f (1)

V'a- \-,
for all n > 2 and all a in the range as a < I1-a. Since tbcre are only O00g 0) termis in the summiation (4), it
followAs t~hat I1(,) = O((f(n) Ig i)! \/7i and A (n) =O(j,

2(11) lg2 n). A factor of' 1g2 "1in area is paid because
monotonicity is a weaker constraint than Regularity Condition Cl onl the well-behavedness of f~n/'

'Ihe layout construction of' the 1'ollo\ing Section will need to assume that /I(n) is itself well-behaved
according to a diffe~rent regularity condition.

IDefinition: A function g( n) is said to satisfy Regularil l Condition C'2 if there exist positive

constants c2and 32 suchl thlat 32 :5 1/2 and g(131)) : '2g~n) for all )) > 2 ind for ll] P in the
rangec18 2  13 f: 1 A

The qualification "fior all n > 2" in this definition seems to be stronger than the phrase "for all suifficiently
large n" whichi was used in the definition of' RC'_nilarit Condition Cl. If all the Va1lues Of g~l) are positive.
however, the two qualifications are equis ,dcnt--althoiugh the %alues for the constants may be different.

Condition C2 is always satisfied by thie soluitions of 1Ao) showvn in the first two lines of' fable 1, but not
necessarily by that in the third line. 'I o 2tiaralitee that .1 (n stisfies Condition C2 in this instance, it is
sufficient to assumne that f~n) tsela~tislies, Condition C22 inl addition to the lpreviOUs assumption that
f(1n)/sfY satisfies Cl.

fllie reader should he zmare that most tof the functions ar-ising From d separatIor' theorem will indeed saitisfy
these regularity, conditions. As an example, the conditions arc satisfied by all functions of the forml c iqlg k n
for constants c. q. and k such that cand q are posti\e. Similar regularity conditions are assumed elsewhere in
die literature (e.g. [11, 131. and 141) in Order to determine the asymptotic behas ior of general complexity
functions.

6. Area-Efficient Layout Construction

Area-efficient layouts canl he obtained through the use tof the div ide-and-conquer paradigmn. 'Ilis section
presents a consitruction which takes at graph and divides it into two subgraphs which are recursively
embedded. 'lie tvo subLiyouts arie then sliced to expose the vertices with edges inl the cut set and then those
edges are routed as described in Section 2.

'Iheoremn 3: L et S he a class of graphs for which an f(n)-separator theoremn has been
prosed. a nd let as. and cbe thie constants postulated by the separator theoremn. If A (n),

whlich is, defined by A- (ii) I /cfor ti = 1, and

I4() niax ( ' a)+I(I-a)") + f () 2  (5)
.5-a -(vs5

for n > 1, sit isfies lRctilalrit\ Ci ndition Ci2 v ith t. -as and /32 =as. thlen anl\ n-verteX
graph b, in S can he emhedcdc in an\ IreCIo12C Ic) !~hI-C ,l is It least

aj~i vIoe spct ratio is ;it '.wrst S

5I11m t~w entir Im 1fri i k ahl 10 ~ ,~~ic - '1) C 111L~ I ]>ur iihLI1 ' c!:lh I 1V J! ' 1 r01 0 0; T , ot,
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Prof l.ct G be an n-vertex graph in S. lle following rccursive construction shows how to emhed G in a

rectangle R whose aspect ratio aR is at most as and whose area is As(n). Without loss of generality, view

rectangle R so that tie longer side which has length L(R) = /l1z)/oR is parallel to the horizontal axis, and

so that the shorter side which has length IW(R) = V7/i;iAs(n) is vertical.

Step 0. Inifiacondition. If n = I then the graph G is just a single vertex. Rectangle R, which has area

As(1), must contain a grid square because each dimension of R is at least two, a fact that is easily verified.

l'hus the theorem is truc for the initial condition by simply embedding the single vertex in the grid square and

returning this layout as the result of the construction.

Step 1. Partition. Using the f(n)-separator theorem, divide G into two disjoint subgraphs GI and G2
which have ayGn and (1-a(;)n vertices respectively, where as :_ a _ ]-as. [he number of edges in the cut

set is at most csf(n).

_ _ VSi7(n)~V;7

4- + + + + 4+ - 4- + - +

- + -4 4- + - '- 4- +- + 

R 0 -

± +4 + + 4t 4-v

2 R 2R 0 ,

+ + + . + - + 4_- - - -
4- + 4- + + 4 4 + \1- R-\1'-S(11)

s,,,+4 6 (-.,

+ 4- + 4 + + i- +- - 1

+ - + + + + + -- +

+- +-4- + + + +- + +-

V' ls (ac +-n 1-%

Figure 5: The relationships among rectangles in Step 2.

Step 2. Solvc the .subprobletns. Remembering that rectangle R is oriented with its longer side horiontal,
define R1 to be a similr rectangle to R thi has area As(a(,+n)A11I(( -%)n) and sits in the lower left corner of

R. (See I-igure 5.) Appl I emma 2 with
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4 = (a%) ,4 (a%,0

to divide R0 into two rectangles R1 and R2 whose areas arc ,lS(ati) and Is -a )n). Ile aspect ratios of R1

and R2 are bounded below by as since

as < < Aa,) < I1 -aP) < 41 ( a,) < a-s.
A (n) )(a, 1l) +A ((I -a G;)n) (b)

which follom s fronm die definition (5) of' A (n) and RCgu'.Ltrit.\ Condition C2. Now solve tile subproblems by
recursively embedding G I inl R1 and G2 in R2,

Step 3. Aarryi the subproblems. For ctch Of the (' f(n) edges in the set of removed edges, make at most

two horizontal and two vertical slices through R0 to ro1 the edge between its incident vertices as was shown
in Figure 3. The length of this new 1,\out is L( %)+2 c t(n) mnd its A idth is (V'(R0)+2 csf(n). It remains to

be shown that tis laoIt actuallb fits in rectangle R, viz.

L(R) > L(Ro)+ 2csf(n), (7)

W(R) _f(R) + 2cvf(n). (8)

To prove these inequalities, mathematical induction can be used to give an alternative definition of As(,1

to that of Fquation (6): As(n) = 4/a for n = 1. and

As(n) = max (V., (a")+As((1-a~h) + 2csf(n)/VUs)
2

a S <a< -a S

for n > 1. We can now use this definition pro\e Inequality (7) since

L(R) = /Ajn)/a R

> v/(/I s (ac;,) +G 11 ((1-aG)n))/aR + 2(c sf(n)/aisa

_ L(R0 ) + 2Csf(t ) ,

which follows from the fact that a aR  1. 'The proof of Inequality (8) makes use of the fact that as < aR,

whence

'W(R) = V-AS(n)

> a- (V s(t;t) +As ((l -aGM;) + 2 cSfnVus )

> 'W(R o) + 2c f'(n)V'-I7/ s

> 'W(R 0 ) + 2 cf(n).

We have shown that the lIoLIt actualk\ fits \Aithin the bounds of rectangle R which completes the proof
of'lheorem 3. 0
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7. Corollaries of the Main ResulIt6

Upper bounds on the areas of VI SI layouts fornmany graphiscan be immediately dcricd as consequences
[Iheoreni 3 and ['able 1. Some of these corollaries are enumerated in 'able 2.

Table 2: Areas of graphs.

Class of graphs Areca of layout

Irecst 0(11)

Planar graphs 061 lg, n)

Outerplanar graphst 0(n)

X-trees (n= 2*)t 0(n)

k-dimenisional mieshes (k > 2)t O( -21k)

Giraphs of genuis k (k > 0) 0(k' I ug2

Shuffle-eXchanbec (it = 2 k 0(&?/lg

Cube-connecied-cy cles 02 k 2 k)t 0(In'/lg2 11)

t Iliese results are optimal to Nwihin a constant factor.

[hei separator theorems of Section 3 produce the first two results Of the table. Since the Class of tree
graphs has a I -separator theorem, the first line of Table I says that any tree or forest of trees has a layout
A~ hose area is linear in the number of 'vertices. Lipton and Tlarjan's VHn-separator theorem for planar graphs
m'i\. ac11 cor'din- to I inc 2 of [able 1. an 0(11 1g

2
1i) area upper bound for the layout Of any planar graph of it

c rtices.

Ou.terplanar graphs are triangulations of polygons, perhaps with somte edges remox ed. 'ibe author has
been able to prove a I-separator theoremn for the class of outerplanar graphs, and thus these graphs hawe linear
area layouts. The sepairator theorem f~tr trees is Subsumed by this result because every tree is an Outerplanar
graph.

'He X-tree graph 11 9], which is shown in Figure 6. is a comiplete binary tree with brother connections.
one could attempt to lay out this gratph by mnodifying the HII-ree lay out. but prm~ing that the claiss of X-trees
has at Igii-separator theorem is casier. B~isect the graph wNith at w rtical line that Cuts at mnost (Is n)+ I edges.

6 -It, rc l'O , rc p o rtc d in th , c c io o n t c c a n t p la sa r p a p lis la w Iw 'II d IC o C rC d III di 0lc I oId Itt h \ I G \'a tIN tI l 4l In fct.

\ahanti tk~,lo h'mtto hmc, mold he' Lid out in inm'r atc'. \ith no cTo-i''t V \\ I Io~d and .1 1) 1 11iruri It] hasc :rl'o iicd
'oIC(, 111 liiU'' to dilo 11.I t re cil,r 0Lspr0''oor Car hV rcCOLii:;cd II I iTic;Ir'aI't'i Wcci



.8 ..i ... .... 5

V' 13

Flach of the two hales can be bisected similarly, once again cutting at most (lg i)+l edges, where it is now the
number of vertices in the half. Since Ig n = O(') for any positi\e q, line I of rable I shows that any X-tree
canl be laid out in linear area.

Figure 6: The X-tree on 31 = 25 - I vertices.

A k-dimensional mesh is a graph in which each vertex is connected to its nearest neighbor in each of k
dimensions. Any class of k-dimensional meshes for some constant k has an easily proved -i/tAk-separator
theorem, and thus if k > 3, an n-vertex graph in the class has an O(0 22!k) area layout by irtue (of Line 3 of
Table 1.

A graph of genus k is a graph that can be drawn with no crossovers ol a sphere that has k handles
attached. It has been shown 121 that there is a subset of O(kV5T) vertices k hose remoiad yields a planar
graph. Apply ing Iipton and Tarjan's result gives a kvi7i-separator theorem. Line 2 of Table I prm ides an
upper bound of O(k 2 

tlg
2n) for the layout area of an n-vertex graph of genus k.

In 191- lloey and this author prove a separator theorem for the shuffle-exchange graph 1201 on = 22

vertices. Aithough the function in this separator theorem does not satisfy the regularity conditions of
Section 5, the techniques of this paper do apply, and a O(112/lg o) area layout can be obtained. Recently,
hbo ever, we have been able to improve this result by showing that the O(nIlg n) bound holds for all shuffle-
exchange graphs on n = 2 k vertices. This new result, however, does not the techniques in this paper.

Preparata and Vuillemin provide an O(12/jg2 l) area VI.SI layout for their cube-contcted-cycles
network 1181 on i= k24 vertices. The topology of this network, which is depicted itt Figure 7, can be derived
from a boolean hypercube of 2 k vertices by replacing each vertex with a cycle of k vertices. This graph has a
nlIg t-separator theorem since removing all edges in one dimension of the original hypercube bisects the
graph, removal of those in another bisects the halhes. and so forth for all k dimensions. The area bound
O(n:/lg n) that is given by Line 3 of Table I is the same as the area of the layout which is given in 118].

Figure 7: 'tlhe cube-conttected-cycles netmork on 21 = 3 2 vertices.
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Upper bounds in Table 2 that are optimal to within a constant factor arc so designated in the table. '1hC
linear upper bounds are clearly optimal because every graph requires U(n) area. 'llie other lowcr hounds can
be obtained from a result of fliompson [23]. The minimum bisection width of a graph is defined to be the
minimum number of edges that must be cut to divide the graph into a [/2j-vertcx graph and a [jn/21-Nertex
graph. 'Ihompson proves that the area of a graph has order at least the square of the minimtm bisection
width of the graph. This lower bound argument is surprisingly similar to an analysis of printed circuit boards
given in [211.

Using another ofT'hompson's arguments, it can be shown that the shufflc-exchange graph and the cube-
connected-cycles graph have minimum bisection widths of order at least n/lig n. 'Iis arises froi tile fact that
these networks can realize an arbitrary permutation in O(g n) comm1unication steps. thus it oie of these
graphs is partitioned into two halves, it must be possible to swap data items between the hal% es in O(Ig n)
time. Since there are 12(n) data items to be swapped, at least order n/lg ni data cross bcteCn the halves
during each time unit, and hence the minimum bisection width of these graphs is Q(t/lig n). 'lle area of any
VISI layout for these graphs must thereflore have order at least n2/1g 2 n. Thus the upper bound for the cube-
connected-cycles graph is optimal, but there is a discrepancy in the bounds for the shuffle-exchange graph.

There is also a discrepancy in the the upper and lowker bounds for planar graphs. 1lie methods given
above give only a linear area lower bound compared with the O(Illg2 l) upper bound. 'The author believes it
more likely that the Lipper bound can be improved because he knows of no planar graph that requires more
than linear area, and in addition, planar graphs appear to have considerably more structure than is captured
by the Vr-separator theorem alone.

8. An Efficient Implementation of the Layout Algorithm

If a separator theorem can be proved for a class of g'aphs. 'tIleoren 3 can be used to gise an upper hound
on tile a1rea ofa 'TSI 1,Laout for a graph in the class. If. however, a scparatoralgorithin is eik en for the class of
graphs, the steps in the proof of Theorem 3 constitute an algorithm that can construct a VI SI layout for a
graph in the class. In this section, we provide an efficient implementation of this algorithm and analy/e its

performance.

'the layout algorithm uses the separator algorithm as a subroutine, and therefore, has all execution time
that depends upon the efficiencies of both this subroutine and the bookkeeping necessatry for the production
of'a layout. Ihe anal%.sis here reflects this dichotomy. 'The total time required to la% out at graph of It vertices
can be expressed as the sum of (i) the total time de\oted to the repeated executions of the separator
subroutine on the generated subgraphs plus (ii) the time de\soted to the managenent of tile layout
representation. Later in this section. we shall present t fast bookkeeping scheme that is hased on the U.NION-
lINI) al orithmn analyzed by 'la'jan 1221. But first, we analyze the amotunt of time required by the many

executions of the separator subroutine.

'Vie layout procedure has no dircct control oer the efficiency (of the separator suhroutine. In fact, it
imight he the case that all the graph hisections ha\e been pie\iousl compu ted so thait the subrouttine is
decenti' ely fist. For tle anIin.is hert, holioe\er. \oe asulle that the subroutine is invoked in-line, and that

(n) is the time required h\. the 'pr, lor subroutine to bisect a gr;aph of n %ertices. We can express the
relationship of .,'(u). tile lotal amount of tome equired tor ill exCCutions Of the subroutine during the laying
out ofta gri pti of as citices. to (n) 1y the recuirencc SOO ( I Ibm n = I. and



S(n) = S(a1) + S((1 -a)?i) + s(n) (9)

for it > 1, where a varies in thce range as < a < i-a5 .

Bounds for S(n) can bc determined by the samei tcchniquc used to solve Recurrence (1). Def'ine
R(n)= S(I) for it= 1, and

R (n) max R (a i) + s (n)/ n.

for it > 1. The bound s551a

S(n) :5i n)

which holds for the case it = 1, also holds for all Values of n greater than one, as is shown by induction:

S(n) <atzR(an) + (1an (-~)+ s(n)

<max anR (an) + (l-a)nR ((I1-a)n) + s(n)
aS:<a<t-as

<max ttR(an) + s(n)
aS a 1- as

< n R (n).

The results enumerated in Table 3 are derived by evaluating 1?(n) to provide anl uipper bound on .S(ii), and
using a similar function to bound S(n) from below. ILet uis look at tis table in greater detail.

'Table 3: Time devoted to the separator subroutine.

sn) *S'(n)

0(",q < 1 0(n)

O(11lg kn), k > 0 0(Inlgk+lln)

S(q),q> I ' 0(s(1n))

fThc function s(n)/ n must also satisfy Rce'utarit Condition Cl.

Tlhe first line is a bit of a red herring. It says that if the execution time of the separator subroutine is
polynomially less than linear in the number of '%ertices in the graph. then die contribution to the total running
time is lineair. It should be apparent, howevecr, that this preco~nditio~n is rarely satisfied in practice. After all, it
takes the Subroutine at least linear timne just to look at all Of its input.

The second line oflIahle 3 is more usual-the subroutine requires approximately linear timec. In this case,
the total timec requiired by all execuitonS of' thle subrout1ine iS o11Ny at logarithic factor larger than thle time
needed by the initial invocation of' the separator Su~broutine Onl thle graph presented ats input to) the Iltyout
procedu re. I ice gra phs have a Ii near-line I -sepa la itr algo ii t imi t hat is ntot di tlicu It to col)11t ruct, and th us
according to the tablte layout algorithmn would spend a total of O0n Ig ) time executing this as a
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Sub rout inte %hen produicing a layout for anl ~I- ertcx IrNC. It is rcim1ark ah . hi bt I ipt ai n dd I aiji n's; \l -

separator algorithm for planar graiphs also runs inl linear timec, and thus only ()(11 Ig n1) ltme I,, Iiieded Io W111 Of

its execuitions.

lTe third line of the table says that if tile ecXeutionl time (of thle separator subroutine is pol noniially
greater than linear, thle time required by thle first call. n Itich bisects thle n-vertex input riph. di mi ls tile
tim11e fo wsubsequentI in vocatitons. 'i'is artal ysi 5 is based oil tile sitp poi 51tion tliat S ( I) i sfi iC (eg ia rit)

Condition Cl. When only nonotonicity is assu med. the totall time is 0(x (n) Igni)).

Now that the costs due tio the f(n)-separator algorithmn have been determined, wec turn otir attition to

thle book keeping required to mnaintaintile layout reptesentation. *Abe implementation proposed here mtakes

t\t i \ c e othe UNION-FIND algorithil anal) ted hi' 'laijani [22]. I liis algorith in provide,; tw\o instruictionts
firf the manipiulatiotn of disjoint sets. HmtN)(x) detetincs die name (If the unique Set cilttiiII CiCtIC V, lttet~
itd I! NIo\( V. )'./) combines the elements of sets AX and Y' into a new set /. The analysis in [221 sIlo%%s that

ttie C qutired to execute it UstoN Operattions interintixed with III > it IiN 1) is 001 a (11.11)) w heie a(mu.11)

I,, rclaied to at funictional ins erse of Ackermann's funiction and grows cxvirceuly slow l\.7 We do not go into a

desclipuli n of the algorithml here-at good one can be ((ittnd in Ill-bitt We shall use the UN to\ attd FI )

oper-ations anld thle re'SUlts of larjan's analysis.

Figure 8: 'flie representation of a layout.

Thle key to the performance of the layout procedure is the sparse represenitation oif lay'outs depicted in
Figure 8. I -tch impor tant point of thle Ia) out is kept in two sets, an .i-si' which represents its x-coordiniate in
thle lasouit and it Y-sct whIiclh represents its p-coordinate. [he important points in thle ;i% out ame the ertices in
the graph and the endpoints of the hiorizontal and vertical edge segments. 'Ible I.. N iN\- FiN t data strnucture

maintains the relationshi p between at poinit and its corresponding X- and .1-sets. II I l.i'o i-e 8. this association is
detioted by) the curved arcs. All the v- and j-seus for it 1a\out are kept in linked lists. Mbe actul .A-coorditlate
represenited b) at gi~ en x-set is therefore determined by its distance froin the heaid of the list. Pointers aie

I ifin c~liniCZts that 1wt all piactival pui po~s. it is less tn or ct;1 ito threc
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used to maintain relationships between points. For example, an edge segment is reprcsented by a pointer

between its endpoints.

+ + + + + + + + 4 4- 4-

+ + - + + + + ± + - +

0
4 -4- 4- 4- + ++ + + + + + +- 4 + + 4- + + +

+ - + + 4- + + + + + + + + ± + + + - 4-

4 + 4 + + + + + + + + +

LL= Dx El +

± + + + + + + ± + + + + + 1- + - +

1 -+ + +- + +± + + + + ± + + +

+ - - - + 4- - -4- + + 

+ 4- -4 + - + + + + 4-

+ - + 4- + - + - 4-

+ - + 4- + + +

0
+ 4- + 

4- +-+ 
+

1 4- 4- + ± + + + +

-- 4- + -4- "4 4- + -4- + 4- + - + 4- +

0

x 4- + 4- + + + +

+4 + 4- + + + 4 +

Figure 9: Routing an edge by slicing.

There are two importint operations that must be performed during the layout algorithm-slicing a layout
to route an edge and combining two sublavoots into a single Lvout. Routing a new edge between two vertices
by slicing can be accomplishcd easily by the fiolliing procedure which is ilustraited in Figure 9.



F I 18

I. F-or each of the vertices, FINt thde x-sct and the )-set to %which1 it belongs.

2. Adjacent to these -v- and( i -sets in thle linked lists, insert nex k - and i -sets. cf't'cti% ely adding
ile" slices of layout. I~~lI1cc pointers represent the hori/ont 'li and \ertical conmponents of
prex iuSl routed edges, thle components are not sex ered and reconnected as \kits described
in Section 2. Instead, they "stretch" auton1"itialy.

3. Add the new points for the edge to be rootLed to thle aprpit -and J-sets, and route thle
edge using pointers to represent thle edge conponlitils. I -ach newN point belong1S to thle Ax- and
.1-5ciS of' thle previous two steps.

Because we are considering only those classes of graphs which laxC e hounded xertex degree, thle number
of edgecs to he routeCd du ring thle entirie course of execuition (ifthe layout procedurie is ineatr in 11, thle Ilumber

of' \crticcs in thle input graph. ihe routing algorithm above is called once hri cachi edge, and hence total4
numbher of imocations is linear in n. D uring each invocation, a constanlt nlumber of 1:1\1 )'s are eXctited. and

the lest of' thle \& ork takes only constant time. ihu1Ls die overall cost is the0 time to execute a linear number of
FIM)t 1 plus' another terml Mhich is linear. Since each Hm~) requlires more thlan constant time, the linear
nLIlllerofIiN ) doiinates.

th'le Cost of Oile lINI*s cainnot he deterinined without also knowing thle number of U NION',, that must be
performed. [he layouOLt algorithim uses thle UNtON operation in the follow ing procedure which combines two
IIvoIiS initoi one. (WithLou loss of generality, aISSLiMlC thle la)Iouts are side-by-side in x.)

1. Append oine linked list of v-sets to theC other. 'Ihis will produce a list of v-sets for the
Combi ned la\ out such that allI of thle x-coordinates (of omle subla out lie to one side of all thle
A-COOrditts (of the othe1r.

2. 1 ra\ erse 110h linked lists of v-sets, and UNION corresponlding i-sets to produce the linked
11 I f' i-sets fO theC the resuo'lt layoult. [hat is. the kth i1-set of final layou1.t is ohtaimned from
the UNmoN of the kill v-sets of'h tUIOIeslyttS.

I he onoiher of 1 Nio\'s varies each time two layouts are conibined because it is dependent~l upon the
oc'ts ' thle linked lists that are merged. If aR is thle aspct ratio (if R,. the rectailgle thlat contatins tile

t,-)O hiiw la 1W then the legt f the linked list is \/ ,n) since R? is ala ietdparaillel to the

Qhort ,;d,. I'his leaids to tile folloxxinp recurrence whichl describes file total numlber of L'NtO'ss executed by
thle IJaff ((itagorithmll 1(n) = 0 for n =1. and

U01) = t(all) + UM( -00n + V01TS(1)
for n > 1. where a Naries ill the range as !< a < I-a5, and vR aries in the range o :5 al I.b1o.Tis
reciirreiicc equationl is similar to Recurrence (9) which describes time devoted to thle excitioll (Iof the
separator subroutine. InI fact, tile samle asymptotic results enlumerated ill T[able 3 aire \alid when \/7I7~l) is
SubIstituted for An(,). Notice in particular that if AS(n) = O(nq) for some~ q < 2, then L'tn) =0(n).

We now x e ca relationship between tile area of tile layout lf,~(ai) and the numbier of' UNtO\'s U ( n). But
/is (//) wa is determniiied. after all, b\ f(00. tile %kidtll of the separator. 0I )0 not con fulse J'01) \% ith N01 ), thle timne
required ti) execuite tile separator subroutine11.) Carryinlg this relationshlip tllrot.Igll, thle numilber of UN io\'s

U00 o can lbe expressed ill terms oif '( n). and then. tusing tile fact that there are only' at linear nuiber oif F:1ND's.
the total time required h the manlagemnt of the layout representation can he deter-mined. Table 4
entumnerates these heut, xIere 7(01) is, tile time required by thle bookkeeping to la ouIt a graph (if nx ertices.

1wfirst line of the table can be derived by ob-erving that if f~i) =- O(W") for I/ < I ird is fl niltilnic if
It;n) Q( VT ), theim *4PO (n 11(11 9 )nd. is wa.s not ced earlier. U ( n) =0(0). lleccitise thle total numliber of
lm)NIs dkilstilear[ InI /I. thle total 1il1le reqireid lit bookkeeping is 0(n i ~i)).
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'able 4: Time devoted to the management of the layout representation.

f(') T(n)

q< It 0(1u(1.,))

0(11) 0(11 lg n)

"I' hc function f(n) must also be monotonic if f () = tZ( ,,2).

ithe second line of the table gives the worst-case running time for the bookkeeping which occurs when
there is no better than an n-separator theorem. In this case the area given by the layout procedure is O(n 2 ),
and the time to combine layouts is O(n Ig n). Other bounds are readily derived for cases when the growth of
f(n) lies between 0 q for q < I and n. For example, if f(n) = nlg, then the time for bookkeeping is
O(tlg lg ?). '[lus even if the separator algorithm is only marginally good, the bookkeeping time is nearly
linear.

9. Layouts with Collinear Vertices 8

The results of previous sections can be applied to models in which different constraints are placed on the
layouts. In this section, we consider layouts in which vertices are required to lie on a straight line. The results
for this model can be easily generalized to other models such as that in which all vertices are constrained to lie
on the (consex) perimeter of the 1i,,out. In this section, the techniques used in previous sections are employed
to proide area bounds for graphs based on separator theorems for the graphs. In addition, some lower
bound results are presented on the optimality of these constructions for trees and planar graphs.

Figure 10 shows how an f(n)-separator theorem can be used to construct a layout with collinear vertices.
First, the graph is bisected by cuttting at most csf(n) edges. Then layouts are recursively constructed for the
subgraphs and are placed side-by-side along the baseline. Vertical slices are made through the layouts, and
edges are routed in the space above.

'he analysis of this construction is much easier than that of Section 6. Since at most two vertical slices are
made for each edge, the length of the layout along the baseline is 0(n). ihe height H(t) of the layout is a
constant for n = 1, and

H(n) = max i(an) + csf(n)
aS !a!5 l-as

for n> 1.

If f(n) is nondecreasing. then /1(n) = O(f(n) Ig n) and the total area As(n) is therefore 0(f(n) nlg a). In
particular. if .l'n)= O(Ig 4n), then ,Is(n) = O( 1 k+l it). If f(,i) is &(' ) for some q > 0 and f( n) satisfies
Reglarity Condition C I. then 11a) = O(j(n)) and A.(1a) = O( a f(n)).

8 The the upper bunds on the amrc ol t .ecs and planar L raphs teprcent Joint %koik, %ilh Ion I Intle ,
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CS f(n) __ __ ___-_-__

TT(
1I(an) '

n n mm f1

0(n)

Figure 10: lhe construction ofa layout " id collinear 'ertices.

This means that planar graphs can be embedded on a line in O(nV7T) area and trees in O(n Ig n) area.

We now show that these ernbeddings tr trees and planar graphs are optimal to A ithin a constant factor. A

similar result on trees was independently discoered by Brent and Kung 151 in which they' show diat in any

layout of a complete binary tree, the area devoted to wire must have order at least 0 Ig n. The approach here

differs in that we show that the con%ex region containing the layout must have (n lg n) area.

Lemma 4: For an complete-binary-tree layout of n = 2k-1 collinear vertices where k > 0,

there exists a perpendicular to tile baseline that lies between the lefttmost and rightmost

vertices and cuts at least [A/21 edges and vertices.

Proof (Induction.) le lernna is easily satisfied fIOr the initial cases of n = I and n = 3. For the general

case. consider the four subtrees of siue 2- - 1. (See -igure 11.) Call the leaf that is leftinoSt on the baseline v,

and let w be the rightmost leaf that is in a diffierent subtree from %. Choose one of the two subtrees that

contain neither r nor w. The inductive hypothesis gives us a perpendicular that cuts [(k-2)/2] edges or

%crtices in the subtree. Since % and w are in different halfplanes as determined by tile perpendicular, the path

betv cen them must be cut by the perpendicular. But this path is disjoint from the suhtree, which means that

one more edge or sertex is cut for a total of k/2]. C3

V w

Figure II: The construction in ILenma 4.

Illis lemma can be used to show that the minimum area of any convex region containing a layout for a

complete binary tree must be U(nlg n). The length of tile layout along the baseline must be Q(). and as

denionstrated by the pre\ious construction, there is a point in the la out ( ig ol) as ay from the baseline. 'l7his

point and the tMO points Om the limits of the baseline determine a triangle M hich h,s P(n lg n) area. Since any

convex region that contains these three points must contain the triangle, so must any convex regio n containing

tle lai out la e U( Nig 1) area.
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Similarly, tile O(nV57) upper bound on the area for (he layout of an n-% ertex planar graph is tight to
within a constant factor because a square mesh requires 2(n/H) area. I his can be shown b.\ coisidering that
the minimnum bisection width of an n-vertex square mesh is \f/77. Thus the pcrpendicular to the baseline
which divides the vertices on tile baseline into [n/2J and [0n21 v'ertices must cut V71 edges. lbe rest of the
proof follom s that ftr the complete binary tree.

'Tie lowcr bound results here generalize immediately to the model in which all vertices are cmnstrained to
lie on the perimeter of a con.ex region. The perimeter of the region must hac length Q(u,) since there are n
%ertices on it. The diameter of the region (the line segment which realizes tie greatest distance betwcen two
points) must also be Q(ti) since it is no less than a factor of rr times the length of the perimeter. Appl ing the
prex ioUs constructions to the layout, and using the diameter of the region as a baseline ,ields the same lower
bound results as before. In the case of the mesh, an exact bisection by a perpendicular may not be possible
because some vertices may lie on the perpendicular itself. '[his situation can be avoided (see 1231) by putting a
unit jog in the perpendicular so that it looks like a lowercase aitch without a left leg. [he perpendicular can
then be adjusted vertically to bisect the graph. For the VI.SI model used in earlier sections, a similar
construction shows that minimum dimension of any layout of a complete binary tree must be Q(lg 11).

10. Perspective

Most w ire-routing programs for printed circuit boards have two phasIes. First, the chips are placed on the
printed circuit hoard. [hen leaving the chips fixed, wires are routed one by one using heuristic search-
umuall\ a \arimt on the path-finding algorithm attributed to lee 112]. Most hardware designers concede that
the first of these two steps is harder. With a good placenlent, routing is easy; with a bad placement, routing is
impossible.

,\lost touters Ior integrated circuits use much the same approach. Variations include plo ccl 1151 and
.iac arr, a.s. In the polscell approach, tile components are laid down in horizontal strips and tile channels
bet,.%cen the stips are used for routing tile wires. hle advantage is that the channel width is not fixed. If a
channel ha too much Congestion, extra tracks carl be added easily in a tmanner reminiscent of slicing. lle
channels riu both hori/ontally and vertically in gate arra. s (also called master slices), but are a fixed width
determined in advance. l\pically, all cells are identical and are connected up with a final layer of
metali/ati(in.

Rccentl\. Johatnnsen [101 has introduced bristle blocks as a technique for laying out integrated circuits.
Rather thn using standard wire routing to connect cells il a design, the cells plug together. 'Ihis would seem
to mean that all cells must ha\e the same width or pitch. Instead, howeser, the cells are designed \ ith places to
stretch so that a cell with smaller pitch can be adjusted to plug into a wider cell with no routing necessary.

,lhe idea of using divide-and-conquer to help with the general wire-routing problem is not new. As far
back as 1969. (iunther iS] gave a heuristic procedure for arranging machines in it orkshop gi\en tie
frequenc. of travel between machines. This algorithm. which alpplies as much to circuit placement as to
machine placement, partitions tile traispi rtation graph and places tie 511bgraphs ill ubricctangles of the
original area. (inther's technique fr parlitioling is highi. heuristic, and he comnients that it is the critical
step. Another heulristic h6r graph partitioning is giien b Kernighan and lii 11II. A.,omig the applications
the\ mention is that of partitionlng chips allong printed circuit hoards so as to minimize the connections
between boards. I here is an ahlorithmic solution to the partitioning problem. howC'\ er. It is based on the fact



22

that the graphs of interconnections which arise in practice are almost planar. By replacing each crossover in
some drawing of the graph with an artificial vertex that performs the crossover, lipton and Tarjan's separator
algorithm for planar graphs can be applied.

It is unlikely that a fast general partitioning algorithm will be found because the problem of finding the
minimum bisection x idth of a graph is NlP-complete [7]. In other words, graphs are hard to partition. Ibis
unfortunate situation brings up tie question, "'Can the divide-and-conquer approach u.scd in this paper, which
petJorois placement and routing simultaneously compete with or enhace those techuiqucs already' in use?"

A difficulty with applying the techniques of this paper concerns constant factors in the areas of layouts.
'[he model in Section 2 assumes that each vertex fits into a square of the grid, and furthermor, that the sizes
of vertices and edges are comparable. For many practical applications, the Ncrtices are somewhat larger than
the edges. 'bis means that the grid size is substantially larger than the edge width, and thus each slice

through the layout wastes a large constant factor. A solution to this problem is to design the cells represented
by vertices with places where they can be sliced, and then use the largest unsliceable portion of a cell as the
granularity of the grid. This technique complements the bristle blocks approach because places where a cell
can stretch are frequently places where it can be sliced.

'Ibere is another solution, however, which does not require the cells to be sliccable, and yet does allow the
granularity of the grid to be the width of a wire. '[he limitation is that sues and shapcs (Of vertices must riot
var widely. Fach vertex is placed in a rectangle whose area is four times the area of the \ertex. '[he layout
algorithm is allowed to slice this rectangle, but slicing is allowed on15 in one direction. In the other direction
the space between or next to the layouts is used as a channel for routing. When a slice is made through a
%ertex. the vertex is not sliced. but instead the edge simply crosses over. When the algorithm terminates, each
edge that crosses over a vertex is routed around the vertex in the unused area provided by the rectangle. The
author is currently working on another approach based on weighted separator theorems where at each stage of
the recursion, all edges that are to be routed at a higher level are brought to the periphery of the current
layout.

Where vertices are large. unsliceable, and of widely varying sizes, the problem becomes one of two-
dimensional bin-packing with constraints. 'Ibis formulation seems the least tractable. It may be, however,
that as with bin-packing, simple heuristics can be found that give reasonable solutions for commonly occuring
instances.
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